レンズ形スペーストラス橋の設計および製作
Design and Fabrication of Lens-shaped Space Truss Bridge

君島博夫*† 千葉正幸*‡
Nobuo KIMIJIMA Masayuki CHIBA

Summary
The Sumpu Yume Hiroba (a pedestrian bridge) has a special structure called a lens-shaped space truss for the sake of landscape. This report describes structural studies on fabricating workability while maintaining the shape and accuracy using assembly jigs.

キーワード：レンズ型トラス，スペーストラス，デザイン性，人道橋，木座版

1. 橋梁概要
本橋は静岡県内の温泉リゾート施設「すんぷ夢ひろば（徳川ミュージアム）」に架かる、デザイン性を重視した人道橋である。支間長39.2m、有効幅員4.0m、総重量30tの単純トラス橋であるが、側面形状がレンズ形、主構断面が逆三角形の特殊な構造となっている。

構造形式：レンズ形スペーストラス橋
支間長：39.2m、有効幅員：4.0m、床版：木床版
主構高：Hw = 0.6 ～ 2.4m（支間中央のライズ0.9m）
主構幅：Bw = 1.2 ～ 3.7m（支間中央のライズ1.3m）

外見の形状は大分県別府市に架かる「イナコスの橋」に類似するが、当該橋梁は圧縮側となる上弦材に、床版を兼ねた無垢の石材を使用している。木床版では作用する圧縮力に耐えられず、その構造型式を適用するのが困難であった。そこで、上部曲弦トラスを変形したレンズ形トラスと、スペーストラス（3次元の鋼トラス）の融合案を提案した。

2. 基本構造の検討
(1) 格点構造

図-1 構造一般図

*† 生産本部設計部設計2課
*‡ 松本工場生産本部製造部製造課長
格点構造には、表1に示すように下弦材・斜材とも鋼管を用いた①パイプ分岐維手構造が考えられるが、切断・組立精度の確保が困難であり、溶接ビードがラップするなど、構造上の問題があった。そこで、斜材のみ鋼管を用いた②ガセット式維手構造を採用した。

（2）主構断面

部材間の取合いに配慮して、図2に示すように上下弦材のウェブ面が腹材面（図1太線）と同一面になるよう、上弦材を避け、下弦材を逆台形断面としている。また、図3に示すように主構高が曲線的に変化するため、腹材面（図1太線）が保れないように、左右腹材面が一定の角度θを保つ（θ:70°37’21”）に保っている。その結果、上弦材間隔も曲線状に変化し、主構は垂直状の形状を呈する（図1の平面図を参照）。

この構造では、図4に示す主構断面投影図において、腹材面（図1太線）が面外方向に推移していくため、上弦材のフランジだけでなく、ウェブも曲面となる。上弦材の投影面（図1点線）にウェブ面を傾ければ、上弦材は一平面上に存在し、フランジのみ曲面となって、製作施工性も確保できたと考える。

（3）端支点構造

下弦材のみに支承を配置する1点支持構造では、橋体が不定型となる。図5(1)に示すように軸倒防止用として、両側に2支点を追加した3点支持構造の場合、鉛直反力の分担が不明確であり、下部工の施工性も悪くなる。そこで、図5(2)に示すように、端支点上に剛な横梁を設け、安定する2点支持構造とした。
3. 構造詳細の検討

(1) 横桁フラケットの検討

上弦材に取り合う横桁フラケットの構造として、図-6に示す2案が考えられるが、製作に配慮して、2)横桁上フランジを通す構造とした。

1) 曲げ加工した横桁フラケットが弦材に取り付く構造

2) 横桁上フランジを通す構造（採用）

図-6 横桁フラケットの検討

(2) 上弦材下フランジと斜材ガセットPLとの取り合い

斜材ガセットPLは 1) 長尺の下フランジに差し込む構造と、2) 上フランジを分割して、板綫ぎする構造が考えられる（図-7）。今回、組立が容易な2)下フランジを分割して、板綫ぎする構造を採用することとした。

1) 上弦材下フランジに斜材ガセットPLを差し込む構造

2) 上弦材下フランジを分割して、板綫ぎする構造（採用）

図-7 上弦材下フランジと斜材ガセットPLの取り合い

(3) 上弦材の開先形状

通常トラスにおける弦材は、図-8に示すようにコ形の状態で内側を溶接後、残りの2辺を外側からグループ溶接する組立て順序が考えられる。今回は溶接による部材の歪みを少なくするため、先に口形に組み立て、4辺とも外側からグループ溶接する間先形状とした。

図-8 上弦材の開先形状

4. 製 作

主構が曲面の組み合わせで直線部分がないため、組立・矯正を行う際、どこを基準にし、どう測定するかが大きな課題であった。橋梁全体の精度を確保するため、以下のようないく快策を行った。

(1) 異重・板取り

原寸データは外面異重とし、全てCL異重切断を行った。シャー会社から材料が入荷した際、切断時に発生した曲がりを1mm以内に矯正してから、次作業を行った。

(2) 組立取の切断、孔明の検討

部材断面が小さく、曲面の組み合わせのため、後切りとし、孔明は仮組立時に当てでもみることとした。

(3) 形状保持材の追加

形状保持材を格点間、斜材Guss.PL両端に追加した。

(4) 組立治具（図-9）

治具上で組立・溶接・矯正を行い精度が上がると判断し、組立治具を採用した。治具は上弦材5種類（図-10）、下弦材1種類、端部材1種類を製作した。

図-9 組立治具
5. おわりに

デザイン性重視の特殊な構造形式を設計する機会に恵まれ、貴重な業務経験をすることことができた。今後、十分に検討を重ねた上で、新構造形式の考案に活かしたいと考える。

また、本工事の製作が思った以上にスムーズにできた理由として、様々な部門の協力を得て、事前に十分な検討を行ったことが挙げられる。今後も今回行ったような事前検討を怠らず、より良い製品を世に出す努力を続けたいと考える。

＜参考文献＞

2）平良敬編著：造景, pp.64-69. 建築資料研究所, 1996.

2005.12.20 受付